A.POPULASI
Populasi adalah
wilayah generalisasi yang terdiri atas obyek/subyek yang mempunyai kualitas dan
karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan
kemudian ditarik kesimpulannya. Populasi merupakan keseluruhan pengamatan yang
menjadi perhatian kita. Diwaktu lampau,istilah “populasi” mengandung makna
pengamatan yang diperoleh dari penelitian statistik yang berhubungan dengan
orang banyak. Dimasa kini, statistikawan menggunakan istilah itu bagi sembarang
pengamatan yang menarikperhatian kita, apakah itu sekelompok orang, binatang,
atau benda apa saja. Populasi dalam penelitian dapat pula diartikan sebagai
keseluruhan unit analisis yang ciri-cirinya akan diduga.
Populasi
terdiri dari unsur sampling yaitu unsur/unsur yang diambil sebagai sampel.
Kerangka sampling (sampling Frame) adalah daftar semua unsur sampling dalam
populasi sampling. Unsur sampling ini diambil dengan menggunakan kerangka
sampling (sampling frame). Berdasarkan
sifatnya, populasi dibagi menjadi dua, yaitu populasi homogen dan populasi
heterogen. Populasi homogen adalah sumber data yang unsurnya memiliki sifat
yang sama dan tidak perlu mempersoalkan jumlahnya secara kuantitatif. Sedangkan
populasi heterogen yaitu Sumber data yang unsurnya memiliki sifat atau keadaan
yang berbeda (bervariasi) sehingga perlu ditetapkan batas-batasnya secara
kualitatif dan kuantitatif.
Banyaknya
pengamatan atau anggota suatu populasi disebut ukuran populasi. Misalnya ada 600 siswa disekolah itu yang kita
golongkan menurut golongan darahnya, maka dikatakan kita mempunyai populasi
berukuran 600. Bilangan-bilangan yang dituliskan pada sekuumpulan kartu, tinggi
badan penduduk disuatu tempat, dan panjang ikan disebuah daanau adalah contoh
populasi terhingga. Percobaan pelemparan dadu yang disebutkan tadi termasuk
contoh populasi takhingga. menentukan populasi dibantu oleh 4 faktor, yaitu:
isi, satuan,cakupan (scope), dan waktu.Contoh : Suatu penelitian tentang
pendapatan keluarga petani di Kabupaten Jombang tahun 2005, maka
populasinya dapat ditetapkan dengan 4 faktor sebagai berikut.
Isi :
Semua keluarga petani
Satuan :
Petani penggarap/pemilik tanah
Cakupan (scope): Kabupaten Jombang
Waktu :
Tahun 2005
B.SAMPEL
Sampel adalah bagian dari jumlah dan karakteristik yang dimiliki oleh populasi.
Sampel merukan himpunanbagian dari populasi. Sampel penelitian adalah sebagian dari populasi yang diambil sebagai sumber
data dan dapat mewakili seluruh populasi. Menurut Sugiyono, sampel adalah
sebagian dari karakteristik yang dimiliki oleh populasi.Keuntungan dalam
menggunakan sampel yaitu: memudahkan peneliti, penelitian lebih efisien, lebih
teliti dan cermat dalam pengumpulan data, serta penelitian lebih efektif.
Sedangkan sampling adalah
suatu proses memilih sebagian dari unsur populasi yang jumlahnya mencukupi secara
statistik sehingga dengan mempelajari sampel serta memahami karakteristik-karakteristiknya
(ciri-cirinya) akan diketahui informasi tentang keadaan populasi.
Syarat sampel yang baik
a) Akurasi atau
ketepatan
yaitu tingkat
ketidakadaan “bias” (kekeliruan) dalam sample. Dengan kata lain makin sedikit
tingkat kekeliruan yang ada dalam sampel, makin akurat sampel tersebut. Tolok
ukur adanya “bias” atau kekeliruan
adalah populasi.
b) Presisi
Kriteria kedua
sampel yang baik adalah memiliki tingkat presisi estimasi. Presisi mengacu pada
persoalan sedekat mana estimasi kita dengan karakteristik populasi.
Presisi=standard error, Nilai rata-rata populasi dikurangi nilai rata-rata
sampel
Alasan menggunakan sampel:
(a)Populasi demikian
banyaknya sehingga dalam prakteknya tidak mungkin seluruh elemen diteliti;
(b) Keterbatasan
waktu penelitian, biaya, dan sumber daya manusia, membuat peneliti harus telah puas jika meneliti
sebagian dari elemen penelitian;
(c) bahkan kadang,
penelitian yang dilakukan terhadap sampel
bisa lebih reliabel daripada terhadap populasi–misalnya, karena elemen sedemikian banyaknya maka akan memunculkan
kelelahan fisik dan mental para pencacahnya
sehingga banyak terjadi kekeliruan. (UmaSekaran, 1992);
(d) Jika elemen
populasi homogen, penelitian terhadap seluruh
elemen dalam populasi menjadi tidak masuk akal, misalnya untuk meneliti kualitas jeruk dari satu
pohon jeruk.
Sampel yang
baik harus dapat mewakili keseluruhan populasi dan hasil penelitian dapat
diterapkan keseluruh populasi. Misalnya saja, dalam usaha menetukan umur
rata-rata suatu lampu pijar tertentu, adalah tidak mungkin untuk menguji semua
lampu pijar kalau kita masih ingin menjualnya. Biaya yang lebih besar sering
menjadi faktor penghalang untuk mengamati semua anggota populasi. Oleh karena
itu, kita terpaksa menggantungkan pada sebagian anggota populasi untuk membantu
kita menarik kesimpulan mengenai populasi tersebut.
Teknik (metode)
penentuan sampel yang ideal memiliki ciri-ciri dapat memberikan gambaran yang
akurat tentang populasi, dapat menentukan presisi, sederhana sehingga mudah
dilaksanakan, dan dapat memberikan keterangan sebanyak mungkin dengan biaya
murah.
Jumlah/Besar sampel
perlu mempertimbangkan hal-hal sbb:
a) Derajat keseragaman (degree of
homogenity)
b) Presisi yang dikehendaki dari
penelitian
c) Rencana analisis
d) Tenaga, biaya dan waktu
e) Besar populasi
Kalau
kita menginginkan kesimpulan dari contoh terhadap populasi menjadi sah, kita
harus mendapatkan contoh yang mewakili. Prosedur pengambilan contoh yang
menghasilkan kesimpulan konsisten yang terlalu tinggi atau terlalu rendah
mengenai suatu ciri populasi dikatakan berbias.
Untuk menghilangkan kemungkinan bias ini, kita perlu mengambil contoh acak sederhana. Contoh acak
sederhana adalah suatu contoh yang dipilih sedemikian rupa sehingga setiap
himpunan bagian yang berukuran n dari
populasi tersebut mempunyai peluang terpilih yang sama. Untuk populasi
terhingga yang kecil, proses pengambilan contoh acak sederhana relatif mudah;
namun dengan semakin besarnya populasi, proses ini menjadi semakin rumit.
C.PENGUJIAN NORMALITAS DATA
TEKNIK SAMPLING
Teknik
pengambilan sampel atau teknik sampling adalah suatu cara pengambilan sampel
yang representatif dari populasi. Teknik sampling merupakan
suatu cara untuk menentukan banyaknya sampel dan pemilihan calon anggota sampel,
sehingga setiap sampel yang terpilih dalam penelitian dapat mewakili populasinya
(representatif) baik dari aspek jumlah maupun dari aspek karakteristik yang
dimiliki populasi. Untuk menentukan sampel dalam penelitian, terdapat
berbagai teknik sampling yang digunakan. Apabila semua
anggota populasi dipilih menjadi anggota
sampel, maka proses ini disebut sensus
(sampeljenuh). Secara skematis, macam teknik sampling dapat dilihat
pada Gambar 1.
Dari gambar tersebut terlihat bahwa teknik sampling
pada dasarnya dikelompokkan menjadi dua yaitu Probability sampling dan
Nonprobability Sampling.

Gambar 1. Macam-macam Teknik Sampling(sumber :
s3.amazonaws.com)
1.Probability
Sampling
Probability
sampling adalah teknik pengambilan sampel yang memberikan peluang yang sama
bagi setiap unsure (anggota) populasi untuk dipilih menjadi anggota sampel.
Jenis-jenis Probability sampling:
a) Simple Random Sampling
Simple random
sampling ialah cara pengambilan sampel dari anggota populasi secara acak tanpa
memperhatikan strata (tingkatan) yang ada dalam anggota populasi tersebut. Hal
ini dilakukan apabila anggota populasi dianggap homogen (sejenis).Pengambilan
sampel acak sederhana dapat dilakukan dengan cara undian, memilih bilangan dari
daftar bilangan secara acak, dsb.
b) Proportionate Stratified Random Sampling
Proportionate
Stratified Random Sampling ialah pengambilan sampel dari anggota populasi
secara acak dan berstrata secara proporsional. Dilakukan ini apabila ada
anggota populasi yang tidak sejenis (heterogen). Pengambilan sampel
dilakukan secara acak dengan memperhatikan strata yang ada. Artinya setiap strata
terwakili sesuai proporsinya.
c) Disproportionate stratified random sampling
Disproportionate
stratified random sampling ialah
pengambilan sampel dari anggota populasi secara acak dan berstrata
tetapi ada sebagian data yang kurang proporsional pembagiannya. Dilakukan ini
apabila anggota populasi heterogen. Teknik ini digunakan untuk menentukan jumlah sampel dengan populasi berstrata
tetapi kurang proporsional, artinya ada beberapa kelompok strata yang ukurannya
kecil sekali.
d) Area sampling
Area sampling ialah
teknik sampling yang dilakukan dengan cara mengambil wakil dari setiap wilayah
atau daerah geografis yang ada. Teknik ini digunakan untuk menentukan jumlah sampel
jika sumber data sangat luas. Pengambilan sampel didasarkan daerah populasi
yang telah ditetapkan. Misalnyadari27propinsidiambil10propinsisecararandom/acak.
2. Non
Propability Sampling
Adalah teknik
pengambilan sampel yang tidak memberi peluang/kesempatan sama bagi setiap unsur
atau anggota populasi untuk dipilih menjadi sampel.
Jenis-jenis Non Probability Sampling
a) Sampling Sistematis
Sampling Sistematis
adalah teknik pengambilan sampel berdasarkan urutan dari anggota populasi yang
telah diberi nomor urut.
b) Sampling Kuota
Sampling Kuota
adalah teknik untuk menentukan sampel dari populasi yang mempunyai ciri-ciri
tertentu sampai jumlah (kuota) yang diinginkan.
c) Sampling insidental
Sampling
insidental adalah teknik penentuan sampel berdasarkan kebetulan, yaitu siapa
saja yang secara kebetulan/incidental bertemu dengan peneliti dapat digunakan
sebagai sampel, bila dipandang orang yang kebetulan ditemui itu cocok sebagai
sumber data.
d) Sampling Purposive
Sampling
Purposive adalah teknik penentuan sampel dengan pertimbangan tertentu. Misalnya
akan melakukan penelitian tentang kualitas makanan, maka sampel sumber datanya
adalah orang yang ahli makanan. Sampel ini lebih cocok digunakan untuk
penelitian kualitatif, atau penelitian-penelitian yang tidak melakukan
generalisasi. Teknik ini dibagi dua, Yaitu:
1. Judgment Sampling, Sampel dipilih berdasarkan penilaian
peneliti bahwa dia adalah pihak yang paling baik untuk dijadikan sampel penelitiannya.
2. Quota Sampling, Teknik sampel ini adalah bentuk dari sampel
distratifikasikan secara proposional, namun tidak dipilih secara acak melainkan secara kebetulan saja.
e) Sampling Jenuh
Sampling Jenuh adalah teknik penentuan sampel bila
semua anggota populasi digunakan sebagai sampel. Hal ini sering dilakukan bila
jumlah populasi relative kecil, kurang dari 30 orang, atau penelitian yang
ingin membuat generalisasi dengan kesalahan yang sangat kecil.
f) Snowball Sampling
Snowball
Sampling adalah teknik penentuan sampel yang mula-mula jumlahnya kecil,
kemudian membesar. Penentuan
sampel
yang mula-mula
jumlahnya
kecil,
kemudian
sampel
itu
disuruh
memilih
teman-temannya
untuk
dijadikan
sampel. Cara ini banyak dipakai ketika
peneliti tidak banyak tahu tentang populasi penelitiannya. Dia hanya tahu satu atau dua orang yang berdasarkan penilaiannya bisa dijadikan sampel.
Karena peneliti menginginkan lebih banyak lagi, lalu dia minta kepada sampel pertama untuk menunjukan
orang lain yang kira-kira bisa dijadikan sampel. Demikian seterusnya, sehingga jumlah
sampel semakin banyak. Ibarat bola salju.Ibarat bola salju yang menggelinding yang lama-lama menjadi besar.
MENENTUKAN UKURAN SAMPEL
Syarat:
(1) Ukuran Populasi
(N) diketahui
(2) Pilih taraf signifikansi
α yang
diinginkan
Ada tiga metode praktis,
yaitu:
(1)Tabel Kretjie
(2)Nomogram Harry King(lihatSugiyono,2007)
(3)Rumus Slovin
Rumus Slovin
Rumus Slovin untuk
menentukan ukuran sampel minimal (n) jika diketahui ukuran populasi (N) pada
taraf signifikansi α adalah:
n =
2)

Contoh:
Berapa ukuran sampel
minimum yang harus diambil dari populasi
yang berukuran
A. 1000 dengan taraf signifikansi α = 0,05
B. 45.250 dengan taraf signifikansi α = 0,01
Jawab :
A. n =
2) =
2
= 285,7143 ≈ 286
(dibulatkan ke atas)


B. n =
2) =
2
= 8.190,045 ≈ 8.191 (dibulatkan ke atas)


NORMALITAS DATA
Pengujian
normalitas dimaksudkan untuk mendeteksi apakah data yang akan digunakan sebagai
pangkal tolak pengujian hipotesis meru-pakan data empirik yang memenuhi hakikat
naturalistik. Hakikat naturalistik menganut faham bahwa penomena (gejala) yang
terjadi di alam ini berlangsung secara wajar dan dengan kecenderungan berpola.
Statistika
berupaya memelihara kewajaran tersebut dengan proses randomisasi pengambilan
sampel, dengan harapan bahwa data
yang diperoleh merupakan cerminan
dari kondisi yang wajar dari pada penomena alami aspek yang diukur. Melalui
proses pengambilan sampel yang memenuhi tabiat random, respon dari sampel
penelitian sebagai wakil populasi, diasumsikan wajar. Kecenderungan penomena
alami yang berpola seragam dan respon yang wajar tersebut memberikan data yang
tidak jauh menyimpang dari kecenderungannya, yaitu kecenderungan
terpola/terpusat. Untuk menguji hal itu, perlu ditempuh suatu pengujian
normalitas populasi.
Dalam
pendekatan statistika parametrik, setidak-tidaknya ada dua teknik statistika
yang dapat digunakan untuk pengujian normalitas, yaitu Uji Liliefors dan chi
kuadrat. Teknik Liliefors menggunakan pendekatan pemeriksaan data individu
dalam keseluruhan (kelompok). Prosedurnya akan jadi rumit apabila jumlah data
cukup banyak. Karena itu, teknik Liliefors biasanya digunakan untuk rentang
data yang relatif sedikit. Sedangkan untuk rentangan yang lebih besar digunakan
teknik chi kuadrat, dengan menguji data berkelompok. Karena asumsinya normal,
maka pengujian didasarkan pada pendekatan Stanine.
Dalam
tulisan ini teknik pengujian normalitas yang dicontohkan adalah teknik
Liliefors dengan hipotesis pengujian sebagai berikut:
Ho: Sampel berasal
dari populasi berdistribusi normal.
H1: Sampel berasal
dari populasi berdistribusi tidak normal.
Pengujian Kenormalan
Data
By. Zulkifli
Matondang – Prodi AP PPs Unimed 2
Kriteria Pengujian:
Tolak Ho, jika Lo > L kritis, selain itu Ho diterima.
Langkah-Langkah Perhitungan
Untuk pengujian
hipotesis pengujian kenormalan data dapat ditempuh
prosedur berikut:
a. Hitung rata-rata
(Mean) dan standar deviasi (s) untuk masing-masing
kelompok data sampel
b. Pengamtan x1 , x2
, x3 , ….., xn dijadikan angka baku dimana z1 , z2 , z3 , ….,
zn dengan rumus
sebagai berikut :
Zskor =
?

c. Untuk tiap angka
baku, dengan menggunakan daftar distribusi normal baku
dihitung peluang : F
(zi ) = P(Zskor <= zi )
d. Dihitung proporsi
z1 , z2 , z3 , …., zn yang lebih atau sama dengan zi . Jika
proporsi dinyatakan
dengan S (zi ), maka :
S (z ) =
n
banyaknya z z z z
yang zn i , , ,....., 1 2 3
e. Dihitung |F(zi )
– S(zi)| dan ambil nilai |F(zi ) – S(zi)| yang terbesar disebut Lo,
lalu dibandingkan
dengan harga kritis L tabel Liliefors pada alpha tertentu.
Contoh Pehitungan
Dalam
menguji kenormalan data, ada dua pendekatan yang dapat
dilakukan. Bila
konstalasi penelitian dalam bentuk korelasi (hubungan) dan
pengaruh antar
variable, maka kenormalan yang diuji yaitu kenormalan galat
data taksiran. Galat
taksiran merupakan selisih skor amatan dengan skor idel
(teoretis) variabel
terikan (endogenus) dari setiap persamaan regresi yang
dibentuk. Sedangkan
untuk konstalasi penelitian komparasi (perbandingan),
maka kenormalan yang
diuji yaitu kenormalan data amatan.
Berikut merupakan
contoh perhitungan kenormalan galat data yang
dibentuk oleh
variabel Y atas X1. Dalam hal ini data yang diuji kenormalannya
Pengujian Kenormalan
Data
By. Zulkifli
Matondang – Prodi AP PPs Unimed 3
yaitu galat
taksiran. Untuk itu perlu dihitung terlebih dahulu persamaan regresi
yang dibentuk Y atas
X1, dengan mencari koefisien a dan b.
Dalam hal ini
terlebih dahulu dicari persamaan regresi sederhana
antara kinerja
pegawai (Y) atas budaya organisasi (X1), yaitu:
Y = a + bX1
Ket : Y = Variabel
terikat. (endegonus)
X1 = Variabel bebas
(eksegonus)
a = Konstanta
intersep
b = Koefisien
regresi Y atas X1.
Harga koefisien a
dan b dapat dihitung dengan rumus :
makasih post nya, sangat menarik dan bermanfaat
BalasHapusditunggu materi selanjutnya